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FOREWORD

The work des cribe-d in this report was performed under
Contracts DAAHOI-67-C-0655 and DAAHOI-68- C-0632 for exploratory
developrnent of provellants for missiles and rockets under the techni-
Cal cognizance of the Solid Propellant Chemistry Branch. Army
Propulsion Laboratory and Center, Research and Development
Directorate. U. S. Army Missile Command.

The propellant ohet.iist on r--.eststh. -=pecxh.ical testing
laboratory to supply some form of quantit*--. laboratory measure
of the mechanical behavior of small quantities of low modalus propel-
lant binder gumstocks. Freque.-tly these materials are ill-suited
for the usual gamut of mechanical property tests developed for
finished rropel1ants. Mechanical property data supplied at an early
phase of propeiant binder development can be useful in determining
proper curing systems and conditions, eifects of plasticizers or other
modifiers, effects of variations of binder synthesis or processing,
and can give indications of glass transition temperature, strain rate
dependency, and other factors which are important in the finished
propellant. The test developed here is useful in these applications
and deviates from previous hardness, indentation, or flexure tests
in that the accompanying data analysis includes the effect of finite
sample dimensions.

The work described here grew out of work first initiated
under Contract DA-0 1-021 AMC- 1536(Z).
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ABSTRACT

A spherical indentation test ior small quantities of low modulus
materials is described and experimentally validated. The data analy-
sis takes into accoun finite sample thickness. Comparison with the
Hertz contact theory is made, and extension to viscoelastic charac-
terizsation is discussed.

1iv !I

iii



CONTENTS Pf

Foreword iii

Abstract Zv

Section I INTRODUCTION I

Section I. ANALYSIS OF THE INDENTATION TEST 3

I. Elastic Materials 3 j
2. Viscoelastic Materials 7

Section flI. DESCRIPTION OF EXPERIMENTAL EQUIPMENT
AND PROCEDURES 10

1. Test Device 10
2. Test Procedures 10

Section IV. EXPERIMENTAL RESULTS AND DISCUSSION 14

1. Evaluation of Test Device and Method 14
2. Viscoelastic Materials Test 18

Section V. CONCLUSIONS 23

References 25

Appendix SOLUTION OF THE INDENTATION PROBLEM 27

1. The Lebedev-Ufliand Solution 27
2. Application to the Indentation Test 33
3. Numerical Solution of Equations 35

t

SvV



- - _ - _ °'- . ' i
4A

Section I. INTRODUCTION

A ball indentation test has been developed to meet the need for
a simple, practical method of measuring the shear modulus of labora-
tory q-.avotitiep- of rubbery materials. The indentation test offers a
number ol possible advantages: sample size and shape are noncritical
and only a minimum of preparation is needed; the quantities of sample
material required are relatively small; the test device is simple and
easy io operate, the method is non-destructive in character, thus
perimtting repeated tests on the same sample.

Many of thi previous applications of the indentation test were
limited by lack of a well-defined relationship among applied load,
indentor geometry, inietation depth, and the material shear modulus,
particularly for thin test zamples. Most work in the past made u~e
of either the classical Heft", contact theory or of some modificatian
of it based upon empirical te.'t data [1-4]. The Hertz solution, dis-

cussed in many texts on elasti'ity (e. g., Timoshenko and Goodier
[5]), assumes the indented solid to be a semi-infinite layer, i.e.,
of infinite depth below the defortced surface. Therefore, in the
design of a practical test, questioms arise as to (I) the limits of finite
specimen size and indentation for which the Hertz theory will apply
with sufficient accuracy, and (2) other relationships which may be
used for those cases where the Hertz theory will not provide results
of the required accuracy.

Hitherto, mainly because no preci .e information was available,
the classical theory was as,3umed to hold f.:- an indentation not ex-
ceeding 10 percent of the specimen thickness, ri, 2, 4]. Gent [2], for
example, has shown that the Hertz thet. y is q.tite accurate for de-
termining Young's moduh's of vulcanized rubbx'rs when using small
indentations, up to one-tenth the sample thicka.ic,. Waters [4] con-
ducted a series of tests, using spherical indei.tor? on heaeta of vul-
canized rubber of various thicknesses, and foui,.: t-t moduli com-
puted by the Hertz theory were in error by less thar 5 percent when
the sheet thickness was more than 8 times the indintor contact
area radius. With thinner sheets, much larger e;rrors were experi-
enced, exceeding 30 percent for thicknesses less tban times the
contact radius. Waters' approach to the problem wa., to .nodify the
Hertz expression by an experimentally derived function involving the
ratio of thickness to contact area and including a consti.t . ,allow
for the surface conditions (lubricated and dry).

None of these methods are particularly applicable tc the

problem of measuring the shear modulus of "soft" polymers (thot. e



with moduli less than 103 psi) in the form of relatively thin sheets.

In order to have indentation depths and forces sufficiently large to

be recorded accurately by conventional instruments, the specimen
must be indented to a considerable fraction of its total thickness,
therefore deviating rr.arkedly from the Hertz model. Empirical for-
mulas are of doubtful value, considering the wide range ol materials
encountei ed. However, Lebedev anc Ufliand [6] have dealt with the
problem of pressing a rigid axisymmetric punch of any profile into
an elastic layer of finite thickness. Their solution offers the possi-
bility of obtaining a firm theoretical relationship among load, ih-
dentation, and shear modulus for tests of rubbery materials in readily
available forms. Parr [7, 8] has applied the Lebendev-Ufliand solution
to the specialized case of a spherical indentor, with particular em-
phasis on obtaining a relationship in a form most useful to the test
laboratory. The results of this analysis led to the development of
the ball indentation test method described herein.
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Section II. ANALYSIS OF THE INDENTATION TEST

1. Elastic Materials

The ball indentation test may be considered as a special
case of the general problem of a punch penetrating a solid. The
geometry is shown in Figure 1. The abject of the analysis is to find
a solution relating the unknown shear modulus of the test sample to
the known or measurable quantities of indentor radius R. applied load
P, and penetration wo, for any thickness, h, of sample materiai. The
materials to be tested by this method will have elastic moduli several
orders of magnitude smaller than those of steel or aluminum, of
which the test device is constructed; therefore, for p-ractical purposes
the indentor and base may be considered infinitely rigid.

The solution to the problem is outlined in the Appendix. Briefly
stated, the solution consists of using the method developed by Lebedev
and Ufliand to express displacements and stressu-s in terms of one
auxiliary function, which represents the solution of a Fredholm
integral equation. The general solution is reduced to the specific
case of a spherical indentor, and equations are obtained for applied
load and indentor penetration in terms of the auxiliary function. The
expressions thus obtained aze too complex to be evaluated exactly,
therefore, numerical methods are employed to compute values of
the auxiliary function. These values, in turn, are used to solve for
load and penetration by quadrature.

The results are presented in Figures 2 and 3. These sets of
curves are taken from the paper of Ignatowski and Parr [8] in which
the analysis originally appeared. In Figure 2 the dimensionless load
(1-v)P/4xR? is plotted versus dimensionless indentation wo/R for
various values of the dimensionless thickness ratio h/R (v is Poisson' s
rati7, and ± the shear modulus). Figure 3 presents the same infor-
mat -~n in a different marnner, with indentation as the abscissa and
curves for various values of thickness ratio. Note that the elastic
constants -' he material appear only in the dimensionless load; all
computaticrF are independent of the elastic constants. This situation
results from the boundary conditions imposed, in which frictionless
contact between the test sample and base or indentor is assumed.

Dimensionless quantities were chosen for the calculations
and Figures 2 and 3 for the sake of convenience and generality, but
these quantities may not neces.iarily be the most convenient for
actual test data reduction. The curves can easily be modified to
apply to any particular laboratory setup. With the indentor radius

J(I.~
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known, and Poisson's ratio known or assumed (v = 0. 5 is a very
good approximation for rubbery materials), curves of P/g versus
w0 for various values of h (from Figure 2), or versus h for various
values of w0 (from Figure 3), are obtained. The shear modulus
can then be determined from laboratory measurements of P, h,
and w0. A difierent set of curves is required for each indentor
radius and Poisson's ratio, but these are available simply by changing
the scales on the basic curves in Figures 2 and 3.

The curve of the classical Hertz contact problem solutio.
is included in Figure 2 for comparison with the Lebedev-Ufliand
solution. Note that the two essentially agree for specimen thick-
nesses in excess of ten indentor radii. However, for thinner speci-
mens, drastic differences between the solutions are seen. The Hertz
theory, developed for a semi-infinite layer, does not consider the
effects of finite thickness which become prominent for relatively thin
layers. For example, for a specimen thickness of one indentor
radius (h/R = 1) the Hertz theory gives a shear modulus value some
35 percent higher than that given by the Lebedev-Ufliand curves.
Additional comparisons will further define the practical limits of the
classical theory and illustrate the hazards of its misuse with thin
sections.

2. Viscoelastic Materials

Strictly speaking, the foregoing discussion and the analysis
given in the Appendix pertain only to elastic materials. However,
since many, perhaps most, materials of interest exhibit viscoelastic
behavior, it becomes important to know how the indentation test may
be applied in measurement of viscoelastic properties.

Through the processes of stress relaxation, certain visco-
elastic materials, subjected to a constant strain, will eventually
reach a condition of equilibrum for which the stress remains constant
with time. Moduli corresponding to this condition are known as
equilibrium, long-time, or "rubbery" moduli, and may be computed
from indentation test data and the results of the elastic analycis,
just as with an elastic material. In other words, the material is
assumed to have reacihed a state where the shear modulus is indepen-
dent of time as it is in an elastic material. The only requirement
is to wait a sufficient length of time before taking readings to in-
sure that equilibrium has been reached.

For shorter ranges of time when equilibrium stress-strain
conditions have not be achieved, or for tests where the purpose is

7
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measurement of short-time effects such as relaxation moduli, the
indentation test and its elastic solution also appear useful. However,
the problem of application becomes considerably more difficult.

The information in Figure 2 may be considered as described
by

P

- f(w0 )

where f(w0 ) is a function known only graphically. Lee and Radok
[9] have shown that the viscoelastic counterpart of tWe Hertz con-
tact theory can be deduced from the elastic olution. By analogy,
we may say that

P(t) - I(t-T) df(w) (2)
d 'r

where L(t) is the shear relaxation modulus, and f(w0) is time depen-
dent because w0 is time dependent. Equation (2) may be solved for
4(t) if the time dependency of f(w0) is known. This, however, is not
easily done even if wo(t) is known because f(w0) is a complex function
of wo(t).

One useful case, for which there is a relatively simple solution,
is that of a step function input. If w0 (t) is applied as a step function,
or instantaneous, penetration, then f(w 0 ) is also a step function and
(2) reduces tc,

P (t) t)f(wo) . (3)

The dimensionless load in Figure 2 can then be interpreted as

(I-V)P(t).~R 2 (t)

Knowledge of the load-time history, P(t), permits calculation of the
shear relaxation modulus F(t).

In actual practice a step function is, of course, not achieved.

Some finite time, tj, is required for the indentor to reach the de-
sired penetration depth. Nevertheless, for many materials it may
be possible, with suitable high-speed test devices, to reduce tj to

4 8



values much less than the times of interest and thus be able to consider
w0 (t) a step function for all practical purposes. Following the same
approximation often used in tensile stress relaxation testing [10], it
appears reasonable to assume a step function input for times greater

than 10 t 1 .
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Section III. DESCRIPTION OF EXPERLDAENTAL
EQUIPMENT AND PROCEDURFS

I. Test Device

A simple prototype test device was initially built to obtain
a- approximate comparison between the theoretical analysis and
egperimental data. The results were encouraging, and so a more
refined design mndel was constructed according to the sketch of
Figure 4. The ball indentation test device shown in Figure 4 some-
what resembles two interleaved C-clamps. The upper "C 1 supports
the test specimen and is designed tL be suspended from a load cell
by means of a pull rod with universal joints. It is counterweighted
and balanced so as to hang freely with the pull rod centerline
vertical. The spherical indentor is mounted in the lower "C1'
which is attached by another pull rod to the movable crosshead of a
universal tensile testing machine. With the test specimen and in-
dentor located between the overlapping arms of the "C's, the in-

dentor is pressed into the specimen when the lower "Cl" is given a
downward displacement. Scribe marks along the centerline of both
parts facilitate alignment during assembly and operation.

The test device was originally designed to be used with Instron
universal test machines, but is easily adaptable to many other loading
arrangements. For example, a fixed support and a dead weight pro-
duce a creep tester. The small size of the device (approximately
5 X 3 X 2 inches overall, not including pull rods) enables it to be
used in most available temperature and environmental chambers.

The indentors are commercially available, ground and polished,
tungsten carbide balls, cemented to insert pins. The indentors are
readily interchanged and are presently used in a range of sizes.
Table I gives the sizes which are available. Maximum test specimen
dimensions are 1. 5 inches square by 0.75 inch thick. The test speci-
men base has been coated with Teflon®1 to redace friction.

2. Test Procedure

The only test specimen preparation usually required is to cut
the specimen to a size which will fit the test device. Very rough
cuts are acceptable for the edges, with no restrictions on squareness.
The contact surfaces, between the specimen and the base and indentor,

1Trademark of E. I. DuPont and Company, Wilmington, Del.
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Table I. Indentation Test Data for Hysol 8705 Specimen

For all test conditions:

Specimeni dimension approx. 1.5 in. sq.
Specimen thickness = h = 0. 504 in.

Poisson's ratio = v 0.46 from Mfg's s-ecs
Penetratio,. rate = 2. 0 in./ min
Temperature 77SF
Load readings taken after 2 min relaxation at constant

indentation
Specimen surfaces dusted with talcum powder

Indentor Computed
Radius, Indentation (I-V)P Load, P Shear

R Depth, w0  4R? (Note 2) Modulus, ±

(in.) h/R (in.) wo/R (Note 1) (lb) (psi)

0.0625 8.05 0.025 0.40 0.69 1.05 212

, 0.038 0.60 1.25 1.92 212

0.050 0.80 1.92 2.97 214

0.0938 5.37 0.038 0.40 0.71 2.73 235

0.056 0.60 1.30 4.74 222

0.075 0.80 1.97 7.45 231

0.094 i.00 2,72 9.92 223

0. 1250 4.02 0.050 0.40 0.74 4.78 224

0.075 0.60 1.34 8.80 227

0.1562 3.22 0.031 0.20 0.26 2.45 208

0.062 0.40 0.76 7.19 209

0.1875 2.69 0.038 0.20 0.26 3,56 206

0.2188 2.30 0.044 0.20 0.27 5.70 234

0.2500 2.01 0.050 0.20 0.28 7.28 224

Mean Value 220

Standard Deviation = 10
Note 1 - Dimensionless load values from curves, Figure 3.
Note 2 - Average reading from 2 runs.

12



should be reasonably flat, smooth, and parallel. Allowable deviations
depend upon the particular test circumstances regarding desired accu-
racy, ease of operations, and specimen properties. Care must be
taken about non-parallelism, however, because non-parallel surfaces
will introduce horizontal force components which may cause appreciable
errors, and, in extreme cases, even cause the indentor to slide
across the specimen surface.

It is also suggested that the specimen surfaces be dusted with
talcum powder or lubricated in some other fashion. The effects of
surface conditions have not yet been investigated fully, but pre-
liminary checks indicate more consistent results with lubricated sur-
faces. However, the possibility of contamination of the test sample
must be considered in the choice of a lubricant, and if any doubts
exist lubrication should be omitted entirely. The effect upon the test
results would probably be minor.

Other limitations exist regarding the minimum test specimen
dimensions. In the theoretical analysis the specimen was assumed
to be infinite in extent, though of finite thickness. No analysis has
yet been performed for a specimen of finite dimensions, but test re-
sults have yielded some useful guidelines. Apparently specimen di-
mensions are not at all critical so long as the length and width are
at least 1.5 times the thickness and 6 times the radius of the largest
indentor to be used. Reasons for choosing these values will be dis-
cussed in a later section.

The test procedure consists of displacing the lower "C"
fixture and recording the applied load and indentation depth as functions
of time. Indentation depths may be determined from the test machine
indicator dials, a separate displacement transducer, or by reading
elapsed time from the load-time record and multiplying by cross-
head speed (if known and constant).

The fractional or percentage error in determining indentation
depth may be minimized by going to as great a depth as possible,
subject to the limitations imposed by specimen thickness and allowable
loads. Penetration must not exceed the spherical radius, because
the equation used for the contact surface contour in the analysis would
then no longer apply. Smaller indentor sizes result in lower loads
at a given indentation, but are limited in penetration dept'; therefore,
some compromise may be necessary.

13



Section IV. EXPERIMENTAL RESULTS AND DISCUSSION

1. Evaluation of Test Device and Method

A number of different materials have been tested with the
ball indentation test 'evice, but the results of only a few will be

F presented herein for the purpose of illustration. Two test seriets
of interest are those of Hysol®Z and Solithane®3 113 polyurethane
rubbers. These materials were used to evaluate the test device and
method because their properties were well kno,n from manufacturer's
data or other test results. 4 Comparison of the shear moduli obtained
from the indentation test with those obtained by other means provided
a check on the validity of the analysis and the curves in Figures 2 and
3.

Specimens of both materials were tested in the same manner.
The indentor was pressed at a constant rate into the specimen to a
predetermined depth, and held constant at this depth for two minutes.
The curves of Figure 3 were entered with the values of w0, R, and
h used, along with the load, P, read after two minutes, and values
of the shear modulus were obtained. This modulus was considered
the equilibrium shear modulus, 1 'e, since an essentially constant value
of load was reached well within the two minute waiting period.

Data from tests on the Hysol 8705 specimen are summarized
in Table I. Note that the same specimen was tested with a number of
different size indentors and various indentation depths. No significant

differences in results were found for any of the different indentors
or depths. This was an expected result, for there is no indication in
the analysis that the test setup parameters should affect the computed
shear moduli. The mean value of shear modulus and its standard
deviation, calculated from the test data, are given in Table I as 220
psi and 10 psi, respectively. A shear modulus was also computed
from Young's modulus and Poisson's ratio according to the familiar
equation

2Trademark of Hysol Corporation, Olean, N. Y.
3Trademark of Thiokol Chemical Corp., Trenton, N. J.
4 The specific Solithane sample tested was provided through the

courtesy of Professor W. G. Knauso, and was one of the materials
thoroughly characterized as part of the development of a standard
crosslinked polymer program conducted at the California Institute of
Technology under U. S. Air Force sponsorship.

14



E
- (1 +v ' (4)

where Young's modulus, E, was obtained by conventioDal tensile tests
on specimens cut from the same sheet. The tensile test data gzve an
average E = 550 psi, which in turn gives P = 190 psi. Agref-inert
between the two values of shear modulus is considered reasonoiy good.

Data from tests of the Solithane 113 specimen are presented
in Table II. Again, a number of various size indentors and inden-
tation depths were used, along with different penetration rates. As
before, no significant differences were noted in the values of shear
modulus found for any of the different test conditions. The shear
modulus mean value and standard deviation were calculated to be
197 psi and 16 psi, respectively. The California Institute of Tech-
nology Materials Science group reported a value of 185 psi for the
shear modulus of the particular sample tested, obtained by a torsional
pendulum method. This is in good agreement with the indentation
test results. Unfortunately, the amount of material available was not
sufficient for tensile testing; therefore, no comparison could be made
as was done with the Hysol specimens.

A brief investigation was made into the effect of surface

lubrication which was of interest because the theoretical analysis
assumed frictionless contact. The results are given in Table III.
Although the quantity of data is rather meager, there definitely does
appear to be a trend toward lower values of shear modulus with lubri-
cated surfaces. The data also indicate a much greater difference with
the wet soap solution than with the dry lubricant of talcum powder
used for the test repor ed in Tables I and II, at least for these two
particular materials. The need for zdditional investigation of sur-
fac. conditions effects is clearly indicated. However, surface lubri-
cation may be inadvisable with many materials of interest because
of the possibi:ity of the material absorbing or reacting with the lubri-
cants and th%-s undergoing a change in properties.

When the amount of indentation becomes an appreciable
fraction of the total specimen thickness, the stresses and strains
produced may become so large as to cause specimen behavior to
differ considerably from that of a linear elastic solid, assumed in
the theoretical analysis. Tests were made on several specimens of
different materials in an attempt to determine the limit of indentation
for which the analysis would still apply, as indicated by a significant
change in the computed shear modulus from that for lesser indenta-
tions, all other conditions being the same.

15
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Table I. indentatie' Test Data for Surface Condition Study

For all test rns:

Lead readings aen after 2 n relaxation at constant indentation

Surface Indentation Load, P Computed
I est Specimen Condi zion Depth, w0 (Note 2) Shear M-xllu
Inform.ation (Note 1) (in.) (ib) FL (psi)

Hysol 8705 Dry 0.097 12.8 227
Thickness = h 0. 504"
h/R = 4.0 Soapy 0. I06 13.3 209

v =0.46

Solithane 113 Dry 0.088 11.2 203
Thickness = h = 0. 376"
hIR = 3.0 Soapy 0. 106 12.2 165
v =0.5

Note 1 - Dry = clean and dry, without talcum powder; soapy = coated
with wet soap solution.

Note 2 - Average of 3 runs for each condition.

A definite limit applicable to all specimens was not found, nor
was one expected. Any limit would depend on the combined effects
of several variables, such as indentor radius and material properties
as well as dimensions, and would likely be different for every test
situation. The data were nevertheless helpful, in that they indicated
no significant deviations for penetrations up to one-third the specimen
thickness for any of the specimens tested. Results of deeper penetra-
tions were inconclusive, but in the case of a Solithane 113 specimen
did tend to produce higher computed values ol shear modulus. Deeper
penetrations caused specimens to curl at the edges and to assume a
cupped shape, which could be a significant deviation from the geometry
of the analysis. in general, then, the maximum allowable penetra';on
depth will be taken as one-third the specirr.en thickness, unless addi-
tional data indicate otherwise.

17
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Following completion of all the previously mentioned tests,
the Hysol and Solithane specimens were subjected to a series of tests
to evaluate the effects of lateral dimensions, particularly with re-
gard to finding the minimum size requirea to effectively simulate
the infinite extent sheet assumed in the analysis. Here again, no
exact limit can readily be defined for the general case because of
the interaction of a number of variables.

The procedure consisted of repeating the same test a number
of times, trimming the specimen to a smaller size for each run. Data
from the particular specimens tested indicate no significant variations

in computed shear modulus so long as the specimen length and width
are at least 1.5 times the thickness and 6 times the indentor radius.
While this may vary for other materials and conditions, there does
not appear to be any problem for the types of specimens and con-
ditions for which this test device was designed.

2. Viscoelastic Materials Tests

At this time work has only just begun into the study of visco-
elastic properties with the indentation tester and very little data are
available. However, one series of tests has been performed which
is of interest and will be summarized in the following paragraphs.

The materials tested were different compositions of butyl
acrylate/acrylic acid/Unox 22 15 copolymers formulated by Dr.
A. R. Pitochelli of theqe Laboratories. Indentation test data are
given in Table IV. Note especially the column of values of P0 /Pz.
These figures compare the peak load, P0 , read immediately upon
reaching the stated indentation depth, to the load, PZ, after two
minutes of relaxation at constant indentation. The ratio P0 /P 2 thus
is an indication of tihe degree of relaxation the material undergoes
while under constant strain.

The same data listed in Table IV were also plotted as loads
versus time on log-log graph paper, as in Figure 5, for example. The
results were approximately straight lines. Thus the load data are quite

closely described by the simple equation

P(t) = P + at - m  (5)
e

5Trademark of Union Carbide Corp., New York, N. Y.
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where Pe is an equilibrium load reached "¢ter a relatively long period
of time, t is time, and a and m are constants determined for each set
of test data to give the best curve fit. If the strain input can be
approximately described by a step function [ee equation (3) and the
related discussion, Section 11. 2 above ], then a plot of load as a function
of time may be directly converted to one of shear relaxation modulus,
i(t), by simply changing the scale:

11(t) = + bt - m (6)

where eis the equilibrium r-.jduLus, and b is a new constant. Plots
of shear moduli, i(t), versus time obtained in this manner are shown
in Figure 6 for several of the copolymers tested.

Table IV. Indentation Test Data for Various Compositions
of Crosslinked Butyl Acrylate/Acrylic Acid Copolymers

Composition, Shear Ratio of Peak Load

Mole Ratios of Modulus, to Load after 2 min Remarks (Applyto
BA/AA/Unox 221 psi P 0 /P 2  all Test Runs)

95/5/2.5 30 1.01 Indentor sphere
radius: 0. 125 in.

95/5/5 35 1.01 Indentation rate:
2. 0 in./in./min

90/10/2.5 56 1.01 Indentation depth:
Approx. 0. 10 in.

90/10/5 59 1.02 Temp: 77°F

85/15/2.5 49 1.08 Rel. humidity:
Ambient

85/15/5 75 1. 19 Poisson's ratio
of 0,.5 assumed85/15/7.5 116 1.20O for all samples

70/30/2. 5 40 4. 18 Shear modulus

70/30/5 73 6.25 computed for
load after 2 min
relaxation
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The foregoing indicates that the indentation test may have
applications for investigating certain viscoelastic material properties,
in addition to its present use in measuring the equilibrium, or elastic,
shear moduli. Properties which might be studied include glassy
moduli, relaxation times, and the slope of the relaxation curve in
the transition region. One must remember, however, that several
assumptions and simplifications were made, the validity of which may
be open to question. Any attempts to use the method for quantitatively
evaluating viscoelastic parameters must await considerable further
analysis and experimental confirmation. Nevertheless, the indenta-
tion test does have possibilities for immediate use in qualitative
studies, such as comparisons of the viscoelastic properties of differ-
ent materials or of the effects of changing an ingredient in a formu-
lation.

Considering the data of Table IV and Figure 6 in the light of
equation (6) leads to the following general statements:

(1) Equilibrium shear moduli, te' were found to be directly
proportional to the number of crosslinks in the material, determined
by the mole fraction of Unox 221. This was an expected result,
based upon viscoelastic theory.

(2) The slope of the relaxation curves, (t), corresponding
to exponent m in equation (5), appeared independent of crosslinking
but increased with increasing acrylic acid content. The slope of
relaxation moduli curves can be expected to increase as the test
temperature approaches the material glass transition temperature.
Glass transition temperature is mainly a function of acrylic acid con-
tent for these polymers. Hence, it seems reasonable to conclude that
the acrylic acid content, by reason of its influence on glass transition
temperatures, has the greatest influence on relaxation characteristics
for these copolymers.

(3) There is indicated the possibility of superposing relaxa-
tion curves of samples of different composition but having the same
degree of crosslinking. For example, the curve for the 85/15/2.5
composition could be shifted to the right in Figure 6 and merged with
the curve of the 70/30/2. 5 composition to form a single smooth
curve. Thus, it would appear that the shape and magnitude of the
relaxation curve is a function of crosslinking but its position in time
a function of acrylic acid content. This position in time is indicated
by the value of the coefficient b in equation (6).
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Section V. CONCLUSIONS

The indentation test has been shown to be a valid and useful
method for determining the shear moduli of relatively low modulus
polymers and rubbery materials in the form of thin sheets. Tests
conducted over a wide range of conditions of indentor size, specimen
size, penetration depth, and penetration rate yielded data which, when
reduced according to the theoretical analysis presented, resulted in
shear modulus values in close agreement with those obtained by other
methods. The indentation test offers the additional advantages of
requiring only a small quantity of material and of the need for little,
if any, specimen preparation.

Discrepancies noted between indentation test results and
moduli obtained by other methods car- generally be attributed to
experimental variances and tolerances. In particular, a small error
in measurement of penetration depth can lead to a much larger error
in computing the shear modulus, especially for cases involving a
large radius indentor at a small depth. This probably accounts for
most of the discrepancies. Another cause could be friction between
the specimen surfaces which apparently re3ults in slightly higher load
readings and computed moduli. Also, the moduli from other test
methods, with which the indentation test results were compared, are
themselves subject to the experimental error. All discrepancies
noted thus far are considered minor and can be expected to decrease
as additional skill and experience are gained.

The indentation test is a potentially useful tool in evaluating
viscoelastic properties. Future test efforts will be directed along
these lines, with particular emphasis on measurements of relaxation
moduli and time-temperature effects. Present plans call for. tests
with faster loading rates and longer durations, tests at various tem-
peratures, time-temnperature superposition studies, and continued I
evaluation of the areas and limits of application of the test device and

theoretical analysis.
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APPENDIX

SOLUTION OF THE INDENTATION PROBLEM

1. The Lebedev-Ufliand Solution6

Consider the state of elastic equilibrium of a linear elastic
layer, infinite in extent but of finite thickness, resting upon a rigid
base and undergoing deformation by a rigid punch. The contact sur-
face is a surface of revolution, and the indentation is raalized by
means of an axial force (Figure 7). It is further assumed that there
is no friction between the indentor and layer, or layer and base
(although the general method will permit consideration of more in-
voived cases, such as those with adhesion between layer and base).

The boundary conditions imposed by these restrictions are:

T = 0, w = 0 when z = h, (7)rz

* = 0
rz

w =w - X(r) (r < a) when z = 0, (8)

or 0 (r > a)z .

where a and r are the normal and tangential stress components,.Zrz.'i

respectively, w0 is the indentation of the center of the punch, and
X (r) is the function describing the punch surface. Cylindrical
coordinates r, z, 0, are employed.

The solution is facilitated by the use of the Boussinesq-
Papkovitch-Neuber displacement functions. The displacements
are expressed in the form

2u = - " (9)
ar ar

2 jw = - + (3-4v)45 -  (10)
8z 8z

where u and w are radial and axial displacements, respectively,
t is the shear modulus, v is Poisson's ratio, andl 0 and 01 are
functions harmonic in the layer 0 < z < h.

6Lebedev, N. N. and Ufliand, Ia. S., "Axisynimetric Contact
Problem for an Elastic Layer," P.M.M., 22, 3, 320-32b (1958).
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The elastic stresses are expressed in terms of the functions
just introduced as

% --Z(I-V) z 1 -- !)

z -Z 2 zzz

and F , ) -- (]
rz r- az Oz _(

Substituting (7) and (8) into the relations (9) through (12) gives
the boundary conditions in the following form:

= 0 (13)

+ h--1] = 0 (14)
az z=h

r,

L12v) 01 - 8z J = 0 (15)

3-4v)O - 8 2L[o-X(r)] r < a (16)

L(I-v) - z- 0 , r >a (17)az 8- ]z _Jz=0

The harmonic functions Do and 4) are taken in the form

S A(X) sinh X (h-z) Jo(Xr) dX (18)7 ( sinh X h

and

3L_ _~c~- cosh X (h-z) sinh X(hz)lXr)dX()

az L () sinh Xh s B sh h 0

where A(X) and B(X) are functions to be determined and J 0(Xr) is a
Bessel function.
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O.f t-e fti-ctzons and I' are selec-ted i this ~e.the
bcezmiary co wizton3 3) and 1 * ilb aife' o -- f)a'
BO -;.,-y substizutio_ ;-o ec-ati= ;151 -,g- Cbain- -;e relation

B01- oh )..-.) . (z0)

whii conditions (16) a n (!7) lead :o a syste, of two inegral eoati o s
for A!)':

A(>---Iw,- r (. -< a. (21)

meXI &sinh ).h cosh W AW~J.) d)X= r > a, (2

0s inh ) h

A solution to equations (21) and (22) is sought in the form

6[i- (t) cos )x dt (23)

where
g) Xh +sinh Xh cosh h - sinhz h(24)

) h -z sinh Xih cosh ).h

and O(t) is some unknown function, continuous, together With its

derivatives, in the interval (0, a),

Manipulations of equation (23) will require the following
identities:
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-I i

a: 0 '0 -: <:' r,

o -O ft > r)

7

-P

Uc.s= -i-tegrating .-he rigi--b.-nd porio- o- tf 3) by parts. substimting

the resul-t.ing expressior. for A)) into equation i22), and r--akg ase of

form la f25). w--- ay so- tha: equation (22) is satisfied identically.

Detai.6 of' these steas w-ill not be shown- here.

Substimtion of AQ ) into equation (2 1) and rnak,:ng use of the

or -nuas (") and (27) leads to the relation

IJ

Ol)(rz-tzl-?- dt -

d 0 d (it) dt g(;k) cos Xt cos (;k rsin 8) dX.7

-[w !'- X(r)] (28)

Introducing a new integration variable t = rsin 8 into the first integral
and .-manipulati.ng (28) further, there results

Ors in 0)-- d(t) [G(t rsin 0)

4 G(t-rsin 0)] dt) dO f(r) (29)

31

I31



w-here

- - - jw - x(r)I . (30)

and

G(xII g= g .cos x d) ( 3!)

the Fourier cosin.e tra sforn of the function g(A). .Putting

Fix) = cix) - - 6(t) [G(t x) "  G(t - X)Jd: I (32)

then equation (29) will ha-ve the form of SchlomiLch' s integral eouation7

F(rsin d& fir) , (33)

which has the solution

/2

F/x) 2 f(0) x r "(x sin O) dO (34)= 7 30

where the prLne denotes the derivativc. The result of the foregoing
is an integral equation for the unknown function 6(t):

6(x)6- ! 6(t) [G(t-x)zG(t -x) I dt

0

2- [w0~ 5X (x sin e) d 0J : Ox :a. (3 5)

- w 0

7 Whittaker, E. T. and Watson, G. N., A COURSE OF MODERN
ANALYSIS, Fourth Edition, Cambridge Un'versity Press, 229 (1958).
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I
i it is o-ossible to find a solution zo the integral ecuation (35' in the
:orrn o, a function with a conti-uous derivative, then eouations (18),
(19). (20), and (23) give a co-nolete solution of the contact problem
under consideration.

Many quantites of interest can be ex essed immnediately
n ter.s of the function -(t', ow--inng the intermediate for.nilas -

Fo: examnle, taking the general expression for stress as given in
( II), usi--g the function def-i-ed in (18) and (19), and making the
substitutions of ;20). 123), and (24), gives the expression for the dis-
tribution of nor.mal stresses directly beneath the -.nch, on the sur-
Lace z = 0:

a Za qt_ 13a)
z .r~ z. . ra. (36)

Integrating (36) over the area of the circle of radius a, we find

P=2T 61Ot) dt (37)

in which P is the total appijed force to the punch.

2.. Application to the Indentation Test

In an indentation test the only easily measured amantides
are the indentor dimensions, the maximum penetration depth w0 ,
and the applied load P. Therefore, to be of any use to the experi-
menter the Lebedev-Ufliand solution -must be in a form which permits
direct calculation of the shear modulus from these measurable
quantities.

The following analysis is based upon the use of a spherical
indentor, which has the contour

X(r) R - VRT- ,r (38)

where R is the radius of the sphere. Then equation (35) takes the
form
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6(t) IG(+ x) + G(t - x)- dt
10

- In 'i 13 9
z~l- r!t 2w, ~

At this .oint it becomes convenient to introduce the dimensionless
Guantities:

- = ", G(x) K(g)
a a

2(x)

a a_P , andp

Equation (39) now be-:omes

( )-- ) [K(+ )+ Kl(- O dT

where, from equation (31)

1 - ssinh? a

K(u) = P ] cos a pu d (41)L a + sinh a cosh a

where, for convenience, t = h. Note that the range of g, 7, and p is

from 0 te 1.

The formula for the applied force, (37), assumes the following
form in dimensionless variables:

I

4pR ' v() da. (42)
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From the condition of con.iuity of stresses at radius a, it can be
deduced that

6(a) = 0 LAI) (43)

Applying this to equation (40) yields the expression

R 
(44)

I +- +i) [K(i- 1) + K(T- 1)] di-

Lubstitution of 144) into (40) gives

I - i .__ + " ([K( + I) + K(1 -

In -p I

l~pL(45)

1 -n t [ I [K(7+ 1)+ K(- l d1)] d (r,

Inl-+P 
I

which is a Fredholm integral equation of the second kind.

The problem now becomes one of solving the integral equation

(45) for the function w( ). Once this has been done, the dimensionless
load, (1-v)P/.LRZ, and dimensionless deflection, w 0 /R, can be ob-
tained. In the general case it is necessary to use numerical methods.

3. Numerical Solution of Equations

Solution of equation (45) involves first finding values for the
function K(u) in the interval 0 < u < 2. The function K(u), equation

(41), itself involves the integral of an oscillating function over an
infinite interval which cannot be evaluated in closed form. Filon's
method was found to perform the indicated quadrature adequately by

evaluating K(u) for the finite interval 0 -< a :s 10 in increments of
0.2. This was programmed as a subroutine. For the solution of
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the integral equation (45), a Gauss-Legendre quadrature was used.
In this manner (45) may be rewritten

'- I 7 r j j

j=
(46)

[i F(1?-1 . F In I+P-)

L K("(z j+ K(r. 1)] .-

whe:e the A are weighting coefficients and the ri and - are roots of
the Legendre polynomial of degree N. The resulting set of equations
is solved for values of u at = Tri . These values of ci are, in turn,
used in evaluating (42) and (44) by Gauss-Legendre quadrature. The
results are presented in the body of the report (see Figures 2 and 3)
as curves of dimensionless load (I - v)P/R z versus dimensionless
indentation w0/R for various values of h/R, the ratio of indentor
radius to slab thickness.

36.
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